Transcriptional profiling of olfactory system development identifies distal antenna as a regulator of subset of neuronal fates

نویسندگان

  • Scott Barish
  • Qingyun Li
  • Jia W. Pan
  • Charlie Soeder
  • Corbin Jones
  • Pelin C. Volkan
چکیده

Drosophila uses 50 different olfactory receptor neuron (ORN) classes that are clustered within distinct sensilla subtypes to decipher their chemical environment. Each sensilla subtype houses 1-4 ORN identities that arise through asymmetric divisions of a single sensory organ precursor (SOP). Despite a number of mutational studies investigating the regulation of ORN development, a majority of the transcriptional programs that lead to the different ORN classes in the developing olfactory system are unknown. Here we use transcriptional profiling across the time series of antennal development to identify novel transcriptional programs governing the differentiation of ORNs. We surveyed four critical developmental stages of the olfactory system: 3rd instar larval (prepatterning), 8 hours after puparium formation (APF, SOP selection), 40 hrs APF (neurogenesis), and adult antennae. We focused on the expression profiles of olfactory receptor genes and transcription factors-the two main classes of genes that regulate the sensory identity of ORNs. We identify distinct clusters of genes that have overlapping temporal expression profiles suggesting they have a key role during olfactory system development. We show that the expression of the transcription factor distal antenna (dan) is highly similar to other prepatterning factors and is required for the expression of a subset of ORs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Segregation of eye and antenna fates maintained by mutual antagonism in Drosophila.

A general question in development is how do adjacent primordia adopt different developmental fates and stably maintain their distinct fates? In Drosophila melanogaster, the adult eye and antenna originate from the embryonic eye-antenna primordium. These cells proliferate in the larval stage to form the eye-antenna disc. The eye or antenna differs at mid second instar with the restricted express...

متن کامل

Combinatorial Rules of Precursor Specification Underlying Olfactory Neuron Diversity

BACKGROUND Sensory neuron diversity ensures optimal detection of the external world and is a hallmark of sensory systems. An extreme example is the olfactory system, as individual olfactory receptor neurons (ORNs) adopt unique sensory identities by typically expressing a single receptor gene from a large genomic repertoire. In Drosophila, about 50 different ORN classes are generated from a fiel...

متن کامل

تجویز مورفین خوراکی سبب تأخیر در تکوین قشر بویایی در موش بزرگ آزمایشگاهی نژاد ویستار در دوران جنینی می‌گردد: یک مطالعه مورفومتریک

  Background and Objectives: Previous studies have shown that morphine consumption during pregnancy may delay embryo development or cause abnormal nervous system function. This study focused on the effects of maternal morphine consumption on olfactory cortex development in Wistar rats.   Material and Methods: In this experimental study, 12 wistar rats (250-300g) were used. The experimental grou...

متن کامل

Effects of male phermoneses on neuronal morphology in the dentate gyrus of hippocampus of female Mice

Background & Aims: Neurogenesis in the adult mammal brain occurs throughout life. Adult neurogenesis has been clearly demonstrated in the sub granular zone (SGZ) of the dentate gyrus (DG) in the hippocampus. Pheromones that plays an essential role in the development of the central nervous system. The male pheromones are involved in regulating neurogenesis in both the olfactory bulb and hippocam...

متن کامل

Homeobox gene distal-less is required for neuronal differentiation and neurite outgrowth in the Drosophila olfactory system.

Vertebrate Dlx genes have been implicated in the differentiation of multiple neuronal subtypes, including cortical GABAergic interneurons, and mutations in Dlx genes have been linked to clinical conditions such as epilepsy and autism. Here we show that the single Drosophila Dlx homolog, distal-less, is required both to specify chemosensory neurons and to regulate the morphologies of their axons...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017